Unit II

- **4.** (a) Derive an expression for entropy production due to mass flow.
 - (b) Discuss Electro-Kinetic phenomenon in detail. 8×2=16
- **5.** (a) Discuss the theory of fluctuations. Derive and expression of fluctuations in density.
 - (b) State and explain the principle of microscopic reversibility and the Onsager reciprocal relation.8×2=16

Unit III

6. Find the commutator relation for the following: $4\times4=16$

(i) $\left[\hat{\mathbf{J}}_{v},\hat{\mathbf{J}}_{z}\right]$

No. of Printed Pages: 06

Roll No.

31549

M.Sc. EXAMINATION, 2025

(Fourth Semester)

(2023-24 Onwards)

(Regular & Re-appear)

CHEMISTRY

Physical Chemistry Special-V
Statistical, Non-equilibrium Thermodynamics and
Quantum Mechanics

Time: 3 Hours [Maximum Marks: 80

Note: Attempt *Five* questions in all, selecting *one* question from each Unit. Q. No. 1 is compulsory. All questions carry equal marks.

(Compulsory Question)

- 1. (a) What is a Partition Function? Write any two features of partition function.
 - (b) Give a comparison of Maxwell-Boltzmann and Bose-Einstein.
 - (c) Write angular momentum operators L_v , L_z in Cartesian co-ordinate.
 - (d) What is Onsager's reciprocity relation?
 - (e) Find the commutator for $[L_x, L_y]$
 - (f) Write the postulates of non-equilibrium thermodynamics.
 - (g) Write the secular determinant for ethylene molecule using Huckel Molicular Orbital theory.
 - (h) What are Bosons and Fermi particles?

2

 $8 \times 2 = 16$

Unit I

- 2. (a) Maximizing the thermodynamic probability of a macrostate and involving Langrange's undetermined multiplier, derive the expression for Fermi-Dirac Statistics.
 - (b) Using Fermi-Dirac Statistics, derive the expression for specific heat of electron gas.8×2=16
- 3. (a) Derive an expression for Bose-Einstein statistics compare it with Fermi-Dirac statistics. State under what conditions the two become equal.
 - (b) Using Bose-Einstein statistics, derive the expression for the energy of Bosons.

 $8 \times 2 = 16$

9. Apply the HMO theory to set up and solveHuckel determinant equation for cyclopropenyl radical and its cation and anion. Explain the information obtained in detail.

- (ii) $\left[L^2, L_z\right]$
- (iii) $\begin{bmatrix} L^2, L_- \end{bmatrix}$
- (iv) $\left[\hat{J}_{+}, \hat{J}_{-}\right]$.
- 7. (a) Derive the expression for total orbital angular momentum and spin angular momentum in Cartesian coordinates.
 - (b) What are ladder operators? Explain in detail. $8\times2=16$

Unit IV

8. Apply the approximation of Huckel MolecularOrbital Theory for Butadiene and hence give the corresponding energy expression and wave function.

5

30